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Introduction

I The OS offers its services to user programs through the
system call interface.

I Often there is an additional layer between user programs and
the kernel.

I This function is usually performed by the C library in Unix
systems.

I Before we deal with system functions we will look at the Unix
shell.
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Unix Shells

I The shell is a user program.

I It works as a command interpreter.

I When a user types the name of an executable, the shell
creates a process (a child) to execute the program.

I There are many types of shells, sh, csh,bash . . .

I Most Unix executables read from standard input and write to
standard output
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I When a user logs in, the shell starts by typing the prompt
which tells the user it is waiting for commands.

I The prompt is usually some symbol like the dollar sign or a
string followed by such symbol.

I example
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Unix Utilities

I Unix system usually came with hundreds of utility programs.

I Each one does one thing only.

I All of them use the standard input/output.

I By combining them, complicated commands can be executed.

I The shell uses system functions to redirect the output of one
executable to be the input of another

I A key concept is output redirection and pipes
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Pipes

I The symbol for a pipe is |
I The output of one program can be connected to the input of

another using a pipe.

I The cat program reads the file and prints it to standard
output.

I The lpr file is the printer device.

I In Unix almost all devices have a file interface.

I In the above example the output of cat is connected to the
input of sort and the output of sort is redirected to the
printer device.
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How does the shell work

I The main job of the shell is

I Execute programs on behalf of the user.

I Optionally pass appropriate parameters to the program.

I Redirect input/output if needed.

I Create pipes to connect the input/output of programs.

I All the above are done using function calls provided by the
system.

I The function are typically wrapper function for system calls
provided by the OS.
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Creating processes

I Unix processes are created using the fork() function call.

I fork creates a child process of the current process.

I The child process is a copy of the parent process.

I The fork() function call returns 0 to the child and the process
id (PID) of the child to the parent.

I The parent of all processes is the init process.

Hikmat Farhat Applied Operating Systems



Child memory

I The child’s memory image is a copy of the parent’s.

I All the child variables are inherited from the parent and have
the same value up to the fork() call.

I Since the child is a copy of the parent any change made after
the fork() call in one of them is independent of the other.
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Example

1 i n t main ( ){
2 p i d t p i d ; i n t v a r =1;
3 v a r ++; p i d=f o r k ( ) ;
4 i f ( p i d ==0){
5 v a r ++;
6 p r i n t f (” c h i l d &v a r=%x v a r=%d”,& var , v a r ) ;
7 }
8 e l s e
9 p r i n t f (” p a r e n t &v a r=%x v a r=%d”,& var , v a r ) ; }

1

2 p a r e n t &v a r=b f f f f d 4 0 v a r=2
3 c h i l d &v a r=b f f f f d 4 0 v a r=3
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Who finishes first

I Both parent and child proceed with execution from the point
of the fork.

I One cannot tell which one finishes first.

I It depends on the amount of work each has to do.

I If parent needs to wait for the child to terminate we should
use the wait system call.
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Example

1 i n t main ( ){
2 p i d t p i d ;
3 i n t s t a t u s ;
4 p i d=f o r k ( ) ;
5 i f ( p i d ==0)
6 p r i n t f (” c h i l d \n ” ) ;
7 e l s e {
8 w a i t (& s t a t u s ) ; /∗ p a r e n t hangs
9 u n t i l c h i l d i s done ∗/

10 p r i n t f (” c h i l d i s done\n ” ) ;
11 }
12 }
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The exec calls

I fork creates a copy of the calling process.

I Many applications require the child to execute different code
from the parent.

I The exec family of functions provide a way for a process to
execute arbitrary code.

I The new image completely replaces the old image.

I This is the reason why no code after the exec call is executed.
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The execl family

1 i n t e x e c l ( c h a r ∗path , c h a r ∗ arg0 , . . . , c h a r ∗ argn ) ;
2 i n t e x e c l p ( c h a r ∗ f i l e , c h a r ∗ arg0 , . . . , c h a r ∗ argn ) ;
3 i n t e x e c l e ( c h a r ∗path , c h a r ∗ arg0 , . . . , c h a r ∗argn ,
4 c h a r ∗ envp [ ] ) ;

I The path is the name of the executable with the full path.

I file is the name of the executable.

I envp[] is an array of strings holding variable-value pairs.
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Example

1 i n t main ( ){
2 i f ( e x e c l (”/ u s r / b i n / l s ” ,” l s ”,”− l ” ,0)<0){
3 p r i n t f (” e x e c l e r r o r ” ) ;
4 e x i t ( 1 ) ;
5 }
6 }

I If execl is successful, line 3 is never executed.

I The whole executable is replaced by /usr/bin/ls.
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The argv array

I The argv parameter passed as argument to the main function
contains the command line arguments.

I argv[0] is always the executable name, followed by the other
parameters in order of appearance.

I All the exec functions allow for the passing of the argv
parameter.

I In the previous example: argv[0]=”ls”, argv[1]=”-l”.

I Note that the list must terminate with a NULL.
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Environment variables

I Unix uses many variable-value pairs called environment
variables.

I Many utilities use the value of theses variables.

I One particularly important variable is the PATH variable.

I The PATH contains a list of directories to be searched for
executables.

I By using the PATH variable one doesn’t need to specify the
absolute path of the executables.
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The execv family

1 i n t e x e c v ( c h a r ∗path , c h a r ∗ a r g v [ ] ) ;
2 i n t execvp ( c h a r ∗ f i l e , c h a r ∗ a r g v [ ] ) ;
3 i n t e x e c v e ( c h a r ∗path , c h a r ∗ a r g v [ ] ,
4 c h a r ∗ envp [ ] ) ;

I The execv family takes the arguments for the executable as an
array instead of a list.

I If the parameter is path the full path needs to be specified.

I If the parameter is file the PATH variable is used to search for
the executable.

I If the execve function is used one can specify the environment
for the executable.
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Example

1 i n t main ( i n t argc , c h a r ∗ a r g v [ ] ) {
2 p i d t p i d ;
3 p i d=f o r k ( ) ;
4 i f ( p i d ==0){
5 execvp ( a r g v [ 1 ] , & a r g v [ 1 ] ) ;
6 p r i n t f (” e r r o r execvp ” ) ;
7 }
8 e l s e
9 w a i t (& s t a t u s ) ;

10 }

I The above example executes any program passed on the
command line along with its arguments.
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Why does it work?

argv[0] argv[1] argv[2]

argv=&argv[0] &argv[1]
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Redirection

I We have already seen that the shell can redirect the
input/output of a program to a file.

I The shell does this by using the dup2 system call.

I The dup2 system call redirects the input/output of one file
descriptor to another.

I Therefore to redirect output to file myfile

1. Open myfile.
2. use dup2 to replace standard output by the descriptor of

myfile.
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Example

1 i n t main ( ){
2 i n t f d ;
3 mode t mode=S IRUSR | S IWUSR | S IRGRP | S IROTH ;
4 f d=open (” m y f i l e ” ,O WRONLY |O CREAT , mode ) ;
5 dup2 ( fd , 1 ) ;
6 c l o s e ( f d ) ;
7 p r i n t f (” t e s t ” ) ;
8 }

I In the above example the string ”test” is written to myfile.

I Anything written to standard output is automatically
redirected to the file myfile.
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File Descriptor table

after open

myfile

std error

std output

std input

3

2

1

0

File Descriptor table

after dup2

myfile

std error

myfile

std input

3

2

1

0

File Descriptor table

after close

std error

myfile

std input

2

1

0

1
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Pipes

I A pipe is a communication buffer that connects the standard
output of one program to the standard input of another.

I A pipe has no external or permanent name.

I Thus it is used only by the process that created it and by its
descendents.

I The prototype for the system call is

1 i n t p i p e ( i n t f i l d e s [ 2 ] ) ;
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Example: ls -f — sort

1 i n t main ( ){
2 i n t f d [ 2 ] ; p i d t p i d ;
3 p i p e ( f d ) ;
4 p i d=f o r k ( ) ;
5 i f ( p i d ==0){
6 dup2 ( f d [ 1 ] , 1 ) ; c l o s e ( f d [ 0 ] ) ; c l o s e ( f d [ 1 ] ) ;
7 e x e c l (”/ u s r / b i n / l s ” ,” l s ”,”− l ” ,NULL ) ;
8 }
9 e l s e {

10 dup2 ( f d [ 0 ] , 0 ) ; c l o s e ( f d [ 0 ] ) ; c l o s e ( f d [ 1 ] ) ;
11 e x e c l (”/ u s r / b i n / s o r t ” ,” s o r t ” ,NULL ) ;
12 }
13 }
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File descriptors after pipe

Parent file

descriptor table

pipe write

pipe read

std error

std output

std input

4

3

2

1

0

Child file

descriptor table

pipe write

pipe read

std error

std output

std input

4

3

2

1

0

pipe

parent

child

0
1

2

3 4

3 4

0

1

2

1

Hikmat Farhat Applied Operating Systems



file descriptors after dup

Parent file

descriptor table

pipe write

pipe read

std error

std output

pipe read

4

3

2

1

0

Child file

descriptor table

pipe write

pipe read

std error

pipe write

std input

4

3

2

1

0

pipe

parent

child

0

1

2

3 4

3 4

0

1

2

1
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Mini shell

1 i n t main ( i n t argc , c h a r ∗∗ a r g v ){
2 p i d t p i d ; i n t s t a t u s , nc ;
3 c h a r ∗ buf ; c h a r ∗∗ a r g s ;
4

5 buf =( c h a r ∗) m a l l o c ( 1 0 2 4 ) ;
6 w h i l e ( 1 ){
7 p r i n t f (” myShe l l$ ” ) ; f f l u s h ( s t d o u t ) ;
8 nc=r e a d ( 0 , buf , 1 0 2 4 ) ; a r g s=p a r s e ( buf ) ;
9 buf [ nc−1]=0; p i d=f o r k ( ) ;

10 i f ( p i d ==0){
11 execvp ( a r g s [ 0 ] , a r g s ) ;
12 p r i n t f (” execvp f a i l e d \n ” ) ;
13 }
14 e l s e {
15 w a i t (& s t a t u s ) ; f r e e ( a r g s ) ;
16 }}}
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Parsing the command line

1 c h a r ∗∗ p a r s e ( c h a r ∗ buf )
2 {
3 i n t count =0; c h a r ∗∗ a r g v ;
4 a r g v =( c h a r ∗∗) m a l l o c ( 1 0 2 4 ) ;
5 a r g v [ count ]= buf ;
6 w h i l e (∗ buf !=0){
7 i f (∗ buf==’ ’ ) {
8 ∗ buf =0; count++;
9 a r g v [ count ]= buf +1;

10 }
11 buf++;
12 }
13 a r g v [ count +1]=0;
14 r e t u r n a r g v ;
15 }
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