
Applied Operating Systems
User Perspective

Hikmat Farhat

October 19, 2017

Hikmat Farhat Applied Operating Systems

Introduction

I The OS offers its services to user programs through the
system call interface.

I Often there is an additional layer between user programs and
the kernel.

I This function is usually performed by the C library in Unix
systems.

I Before we deal with system functions we will look at the Unix
shell.

Hikmat Farhat Applied Operating Systems

Unix Shells

I The shell is a user program.

I It works as a command interpreter.

I When a user types the name of an executable, the shell
creates a process (a child) to execute the program.

I There are many types of shells, sh, csh,bash . . .

I Most Unix executables read from standard input and write to
standard output

Hikmat Farhat Applied Operating Systems

I When a user logs in, the shell starts by typing the prompt
which tells the user it is waiting for commands.

I The prompt is usually some symbol like the dollar sign or a
string followed by such symbol.

I example

Hikmat Farhat Applied Operating Systems

Unix Utilities

I Unix system usually came with hundreds of utility programs.

I Each one does one thing only.

I All of them use the standard input/output.

I By combining them, complicated commands can be executed.

I The shell uses system functions to redirect the output of one
executable to be the input of another

I A key concept is output redirection and pipes

Hikmat Farhat Applied Operating Systems

Pipes

I The symbol for a pipe is |
I The output of one program can be connected to the input of

another using a pipe.

I The cat program reads the file and prints it to standard
output.

I The lpr file is the printer device.

I In Unix almost all devices have a file interface.

I In the above example the output of cat is connected to the
input of sort and the output of sort is redirected to the
printer device.

Hikmat Farhat Applied Operating Systems

How does the shell work

I The main job of the shell is

I Execute programs on behalf of the user.

I Optionally pass appropriate parameters to the program.

I Redirect input/output if needed.

I Create pipes to connect the input/output of programs.

I All the above are done using function calls provided by the
system.

I The function are typically wrapper function for system calls
provided by the OS.

Hikmat Farhat Applied Operating Systems

Creating processes

I Unix processes are created using the fork() function call.

I fork creates a child process of the current process.

I The child process is a copy of the parent process.

I The fork() function call returns 0 to the child and the process
id (PID) of the child to the parent.

I The parent of all processes is the init process.

Hikmat Farhat Applied Operating Systems

Child memory

I The child’s memory image is a copy of the parent’s.

I All the child variables are inherited from the parent and have
the same value up to the fork() call.

I Since the child is a copy of the parent any change made after
the fork() call in one of them is independent of the other.

Hikmat Farhat Applied Operating Systems

Example

1 i n t main (){
2 p i d t p i d ; i n t v a r =1;
3 v a r ++; p i d=f o r k () ;
4 i f (p i d ==0){
5 v a r ++;
6 p r i n t f (” c h i l d &v a r=%x v a r=%d”,& var , v a r) ;
7 }
8 e l s e
9 p r i n t f (” p a r e n t &v a r=%x v a r=%d”,& var , v a r) ; }

1

2 p a r e n t &v a r=b f f f f d 4 0 v a r=2
3 c h i l d &v a r=b f f f f d 4 0 v a r=3

Hikmat Farhat Applied Operating Systems

Who finishes first

I Both parent and child proceed with execution from the point
of the fork.

I One cannot tell which one finishes first.

I It depends on the amount of work each has to do.

I If parent needs to wait for the child to terminate we should
use the wait system call.

Hikmat Farhat Applied Operating Systems

Example

1 i n t main (){
2 p i d t p i d ;
3 i n t s t a t u s ;
4 p i d=f o r k () ;
5 i f (p i d ==0)
6 p r i n t f (” c h i l d \n ”) ;
7 e l s e {
8 w a i t (& s t a t u s) ; /∗ p a r e n t hangs
9 u n t i l c h i l d i s done ∗/

10 p r i n t f (” c h i l d i s done\n ”) ;
11 }
12 }

Hikmat Farhat Applied Operating Systems

The exec calls

I fork creates a copy of the calling process.

I Many applications require the child to execute different code
from the parent.

I The exec family of functions provide a way for a process to
execute arbitrary code.

I The new image completely replaces the old image.

I This is the reason why no code after the exec call is executed.

Hikmat Farhat Applied Operating Systems

The execl family

1 i n t e x e c l (c h a r ∗path , c h a r ∗ arg0 , . . . , c h a r ∗ argn) ;
2 i n t e x e c l p (c h a r ∗ f i l e , c h a r ∗ arg0 , . . . , c h a r ∗ argn) ;
3 i n t e x e c l e (c h a r ∗path , c h a r ∗ arg0 , . . . , c h a r ∗argn ,
4 c h a r ∗ envp []) ;

I The path is the name of the executable with the full path.

I file is the name of the executable.

I envp[] is an array of strings holding variable-value pairs.

Hikmat Farhat Applied Operating Systems

Example

1 i n t main (){
2 i f (e x e c l (”/ u s r / b i n / l s ” ,” l s ”,”− l ” ,0)<0){
3 p r i n t f (” e x e c l e r r o r ”) ;
4 e x i t (1) ;
5 }
6 }

I If execl is successful, line 3 is never executed.

I The whole executable is replaced by /usr/bin/ls.

Hikmat Farhat Applied Operating Systems

The argv array

I The argv parameter passed as argument to the main function
contains the command line arguments.

I argv[0] is always the executable name, followed by the other
parameters in order of appearance.

I All the exec functions allow for the passing of the argv
parameter.

I In the previous example: argv[0]=”ls”, argv[1]=”-l”.

I Note that the list must terminate with a NULL.

Hikmat Farhat Applied Operating Systems

Environment variables

I Unix uses many variable-value pairs called environment
variables.

I Many utilities use the value of theses variables.

I One particularly important variable is the PATH variable.

I The PATH contains a list of directories to be searched for
executables.

I By using the PATH variable one doesn’t need to specify the
absolute path of the executables.

Hikmat Farhat Applied Operating Systems

The execv family

1 i n t e x e c v (c h a r ∗path , c h a r ∗ a r g v []) ;
2 i n t execvp (c h a r ∗ f i l e , c h a r ∗ a r g v []) ;
3 i n t e x e c v e (c h a r ∗path , c h a r ∗ a r g v [] ,
4 c h a r ∗ envp []) ;

I The execv family takes the arguments for the executable as an
array instead of a list.

I If the parameter is path the full path needs to be specified.

I If the parameter is file the PATH variable is used to search for
the executable.

I If the execve function is used one can specify the environment
for the executable.

Hikmat Farhat Applied Operating Systems

Example

1 i n t main (i n t argc , c h a r ∗ a r g v []) {
2 p i d t p i d ;
3 p i d=f o r k () ;
4 i f (p i d ==0){
5 execvp (a r g v [1] , & a r g v [1]) ;
6 p r i n t f (” e r r o r execvp ”) ;
7 }
8 e l s e
9 w a i t (& s t a t u s) ;

10 }

I The above example executes any program passed on the
command line along with its arguments.

Hikmat Farhat Applied Operating Systems

Why does it work?

argv[0] argv[1] argv[2]

argv=&argv[0] &argv[1]

Hikmat Farhat Applied Operating Systems

Redirection

I We have already seen that the shell can redirect the
input/output of a program to a file.

I The shell does this by using the dup2 system call.

I The dup2 system call redirects the input/output of one file
descriptor to another.

I Therefore to redirect output to file myfile

1. Open myfile.
2. use dup2 to replace standard output by the descriptor of

myfile.

Hikmat Farhat Applied Operating Systems

Example

1 i n t main (){
2 i n t f d ;
3 mode t mode=S IRUSR | S IWUSR | S IRGRP | S IROTH ;
4 f d=open (” m y f i l e ” ,O WRONLY |O CREAT , mode) ;
5 dup2 (fd , 1) ;
6 c l o s e (f d) ;
7 p r i n t f (” t e s t ”) ;
8 }

I In the above example the string ”test” is written to myfile.

I Anything written to standard output is automatically
redirected to the file myfile.

Hikmat Farhat Applied Operating Systems

File Descriptor table

after open

myfile

std error

std output

std input

3

2

1

0

File Descriptor table

after dup2

myfile

std error

myfile

std input

3

2

1

0

File Descriptor table

after close

std error

myfile

std input

2

1

0

1

Hikmat Farhat Applied Operating Systems

Pipes

I A pipe is a communication buffer that connects the standard
output of one program to the standard input of another.

I A pipe has no external or permanent name.

I Thus it is used only by the process that created it and by its
descendents.

I The prototype for the system call is

1 i n t p i p e (i n t f i l d e s [2]) ;

Hikmat Farhat Applied Operating Systems

Example: ls -f — sort

1 i n t main (){
2 i n t f d [2] ; p i d t p i d ;
3 p i p e (f d) ;
4 p i d=f o r k () ;
5 i f (p i d ==0){
6 dup2 (f d [1] , 1) ; c l o s e (f d [0]) ; c l o s e (f d [1]) ;
7 e x e c l (”/ u s r / b i n / l s ” ,” l s ”,”− l ” ,NULL) ;
8 }
9 e l s e {

10 dup2 (f d [0] , 0) ; c l o s e (f d [0]) ; c l o s e (f d [1]) ;
11 e x e c l (”/ u s r / b i n / s o r t ” ,” s o r t ” ,NULL) ;
12 }
13 }

Hikmat Farhat Applied Operating Systems

File descriptors after pipe

Parent file

descriptor table

pipe write

pipe read

std error

std output

std input

4

3

2

1

0

Child file

descriptor table

pipe write

pipe read

std error

std output

std input

4

3

2

1

0

pipe

parent

child

0
1

2

3 4

3 4

0

1

2

1

Hikmat Farhat Applied Operating Systems

file descriptors after dup

Parent file

descriptor table

pipe write

pipe read

std error

std output

pipe read

4

3

2

1

0

Child file

descriptor table

pipe write

pipe read

std error

pipe write

std input

4

3

2

1

0

pipe

parent

child

0

1

2

3 4

3 4

0

1

2

1

Hikmat Farhat Applied Operating Systems

Mini shell

1 i n t main (i n t argc , c h a r ∗∗ a r g v){
2 p i d t p i d ; i n t s t a t u s , nc ;
3 c h a r ∗ buf ; c h a r ∗∗ a r g s ;
4

5 buf =(c h a r ∗) m a l l o c (1 0 2 4) ;
6 w h i l e (1){
7 p r i n t f (” myShe l l$ ”) ; f f l u s h (s t d o u t) ;
8 nc=r e a d (0 , buf , 1 0 2 4) ; a r g s=p a r s e (buf) ;
9 buf [nc−1]=0; p i d=f o r k () ;

10 i f (p i d ==0){
11 execvp (a r g s [0] , a r g s) ;
12 p r i n t f (” execvp f a i l e d \n ”) ;
13 }
14 e l s e {
15 w a i t (& s t a t u s) ; f r e e (a r g s) ;
16 }}}

Hikmat Farhat Applied Operating Systems

Parsing the command line

1 c h a r ∗∗ p a r s e (c h a r ∗ buf)
2 {
3 i n t count =0; c h a r ∗∗ a r g v ;
4 a r g v =(c h a r ∗∗) m a l l o c (1 0 2 4) ;
5 a r g v [count]= buf ;
6 w h i l e (∗ buf !=0){
7 i f (∗ buf==’ ’) {
8 ∗ buf =0; count++;
9 a r g v [count]= buf +1;

10 }
11 buf++;
12 }
13 a r g v [count +1]=0;
14 r e t u r n a r g v ;
15 }

Hikmat Farhat Applied Operating Systems

